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(} ko< ABSTRACT

In this paper, the problem of H-plane bifurcation in a parallel plate

7

waveguide filled with homogenous, antisotropic, temperate plasma is considered,
The static magnetic field is assumed to be along the edge of the septum, By

using the Wiener-Hopf technique, the complete field solutions are obtained for

wa””

both semi-infinite and finite bifurcations,



1, INTRODUCTION

The classical problem of an infinite bifurcation in a parallel plate
waveguide filled with an isotropic medium has been considered by many authors,
Marcuvitz1 solved the problem by using the Wiener-Hopf technique, Hurd and
Gruenberg2 by the (mode matching) function-theoretic approach, and Mittra3
by inverting the infinite matrix, Later, Mittra4 also extended his method
to the case of a finite bifurcation,

In this paper the same problem is considered except for the medium which
is assumed to be an anisotropic plasma, To make this problem mathematically
tractable, the plasma under consideration is assumed to have the commonly
accepted model with the following properties: (1) the plasma is an electron
gas with stationary ions which provide a neutralizing background; (2) the
plasma is cold, homogeneous and without interaction between particles, (3) all
nonlinear effects are negligible, The purpose of the present paper is to con-
sider the problems of both infinite and finite bifurcations in a parallel
plate waveguide filled with a plasma having properties described above, and
to present solutions based on the Wiener-Hopf technique,

The solution will be restricted to the case when the dc magnetic field

is oriented parallel to the edge of the septum,



2, FORMULATION OF PROBLEM

The geometry of the problem to be considered is shown in Figure 1, which
shows a parallel plate waveguide of spacing a containing an infinitely thin
and perfectly conducting septum extending from z = 0 to z = J and located in
the plane x = b, Let the medium in the guide be a plasma and let the dc
magnetic field be oriented along y-direction, Then it is characterized by the

relative dielectric tensor

AA . AA AA . AN AN
- 2~1
] XX i€, Xz + €5 VY + i€y 2X + € 2Z ( )

where

2 2.-1
€, =1- (wp/w) (1 - (wc/w) | €,

(wp/w)2 [w/wc - wc/w]—1

2 2
1- (wp/a) y w, =~ @ B /m, Ne™/me _,

m
w
il

P

e = charge of an electron, m = mass of an electron,

N average number density of electrons,

~iwt
The time dependance e 1w is suppressed throughout this paper, Assume that

there is no variation along y-axis, Then from the Maxwell equations,
VXE:iprE VXE:—iwe K<E, (2-2)

it is readily shown that the wave equation for Ey and H are uncoupled because
the wave number in the direction along go is zero, Consequently, we can con-
sider separately the solution with Hy = 0 and Ey = 0,

For the case Hy = o, the nonvanishing field components are Ey’ Hx and

b

Hz; hence, the field is transverse-electric with respect to z, or TE mode,

The wave equation for Ey is given by

2 2
[ 82 + _QE + 63 koz:l E (x,z) =0
0x 0z yoo
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where k02 =W Ho Eo is the free space wave number, The boundary condition on
the conducting plates is the usual one, namely Ey = 0, It is clear that the
problem becomes identical to the one #n which the guide is filled with an
isotropic medium having a relative dielectric constant 53. This is to be ex~-
pected since in this case the electron motion due to rf field is parallel to
Eo; consequently, the anistropic affects are not introduced,

We shall, therefore, concentrate on the alternative case, that of Ey = 0,

for which the nonvanishing field components are Ex’ Ez and Hy' Thus, the

fields are transverse-magnetic with respect to z, i,e,, TM, The wave equation

3

for Hy’ which may be derived straightforwardly, reads

2 2
2
[—82 + —82 + k :, H (x,z) = 0 (2-3)
ox oz y
2 2 2 2 .
where kK = ko e/el and ¢ = El - 62 It is clear that the TM-mode can propa-

gate only when k 1is positive and real, In other words, the passbands are given

by

2 2 1/2 2 2.1/2
- wc/2 + (wp + W, /4) / <w< (wp * W, ) / lower band 2-4)

2 2 1/2
wc/2 + (wp + /4) / < w < % upper band (2-5)

We shall limit our following discussion to above frequency ranges., The electric

field components of the TM-mode are given by

9 0 -
Ex(x,z) = [hl 3%~ Do Py ] Hy(x,z) (2-6)
E (x,z) = |h 2 + h ii— H (x,z) 2-7)
z 1 9z 2 9% y ?
where h, = - Ezﬂueoe and h, = iel/weoe. Now for simplicity assume that only

the dominant TM-mode propagates in the large guide A (expept for the degenerate

TEM-mode), and the incident wave is

. —Y z
E * = Sin T X e la (2-8)




‘ 2 172 ‘ .
where Yig = [(m7a)” - k }7° 7 under the assumption is . a negative imaginary

number, Let the Fourier transform of Hy be

1.2 0
az

B(x,a! - (Al Ho(x,2) e % az (2-9)

2

where a = g + 1T, Then the Fourier transform of Equation (2-3) with respect

to z becomes

2
2
[__Li - y} &(x,a) = 0 (2-10)
ox
2 2.1/2 . .
where y = (a - k) . We shall consider the branch of y such that y—s=g

as q—=+00, It 1s clear that the above equation is defined only in the strip

F ik
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where k1 and k2 are positive real numbers, The introduction of a finite ima-

ginary part in k may be interpreted in terms of finite losses in the medium and

|T| < Re Yla’ For analytical convenience, let us suppose that k = k

eventually k2 may be set equal to zero., It can be shown that y always has a
positive real part when o lies in the strip ]T} < kzg Let Re Yla > k2; hence,

Equation (2-10) holds in the strip |7| < k,, and 1ts solution is

(A ,{a) cosh Y(x-a) - Bl(a) sinh v(x-a), x>hb

®(x,a) =
Az(a) cosh Yx -~ Ez(q) sinh ¥yx , x < b

Applying the conditions:

(L) Ez(x,z) = 0 at x = 0, a for all z,

(2) E (x=b + 0,z) =E_ (x = b-0, z) for all z,
z z

we have after some manipulations,

A (@) [cosh Y(x-a) + (1b,a'h,Y) sinh Y(x-a)], X >b
&(x,a) = (2-11)
-Al(a)[sinh Yc,’sinh Vb] [cosh yx + (1h a/h,Yy) sinh vx]



which gives the Fourier transform of Hy(x,z). Let ¥(x,a) be the Fourier trans-

form of Ez(x,z), Then using Equation (2-7) one has

-Al(a) [h12+ hzz/th] L(a) sinh Y(x-a) X >Db
T(x,a) = (2-12)
A (a) [sinh yc/sinh Yb] [h12+ h22/h2Y] L(a) sinh Yx x<b

2.2 2 2 2
where L(a) = [h2 K"/(h "+ b, )] - a”. The problem now is to solve for A, (a),
which must be determined from the condition that the tangential electric field

is zero on the septum, This will be discussed in the following two sections,




3. INFINITE SEPTUM CASE

In this section we let f = oo, i, e

s ., consider the case of a semi-infinite

bifurcation, Follewing the standard notation used in the Wiener-Hopf tech-

. S .
nique, we write

1/2 0 iqz
®+(X,a) = (__) Hy(x,z) e dz

1/2 po .
® (x,a) = (L) H(x,2) e % dz

Let similar definitions be introduced for ¥ (x,a) and QL(x,a) as well, Then

setting x = b, Equation (2-11) and (2-12) may be rewritten as

¢+(b+0,a) + @ (b+0,a) = Al(a)[cosh Yo - (ihla/th) sinh Yc] (3-1)

3 _(b-0,a)+@_(b-0,0) = - Al(_a)[sinh Ye/sinh Yb] [cosh Yb+(ihla/h2Y)sinh Yb] (3-2)

@;(b,a) + ¥ (b,a) = Al(a) [h12+ h22/h2Y] L(a) sinh Yc (3-3)

Since Hy’ and hence @, is continuous at x = b and z < O, taking the difference

of Equations (3-1) and (3-2) obtains
I.(@) =@ (b+0,a) - @ (b-0,a)= A (a) sinh Ya/sinh Yb (3-4)

Now making use of the boundary condition that the total tangenial electric

field vanishes on the septum x = b, z > 0, we have

1/2
1 . Tb 1
\If+(b,a) :(_27) sin = e -V Yla) (3-5)



Substitution of Equation (3-4) and (3-5) into (3-3) gives

2 2

1/2 h. + h
1 . b 1 _be 1 2 L(a)
<2n> sin g (ia - Yla) + ¥ (@) = a h2 H(a) I+(Q)

(3-6)

where H(a) = [bc Y sinh Ya/a sinh Yb sinh Yc]. 1In the above equation, which
is a Wiener-Hopf type, the unknown ¥ (a) and I+(a) are analytic in the lower
half plane 7T < k

and upper half plane T > - Kk respectively, Following the

2 0
standard technique, we decomposite L(a) and H(a) into L+(a), L (a), H+(a) and
H_(a) analytic in the respective upper and lower half plane, After some

manipulations, the above equation becomes

1 2 om 1 H(@) (1Y) ¥ (a) H_(a)
27 a (a-v ) L@ I_Giv ) | "7 1 @
(3-7)
h2s h? L (1 (a) 1/2 H (-iY_ )
R A T A A LT 1 - 1a
T a h, H,_ (@) 2 ST eV ) LGAY )
where:
L(a) = L+(a) L (a), H(Ga) = H+(q) H (a)
h,k
L() =L (-a) = - e v [a,- al
(h. "+ h2 )
(a/nm) [Y__ - ia]
H+(a) = H_(-a) = exp [- ITa)]IJ: (b/nﬂ)[Y -ia](C/nﬂ)[Ync'ia]

I'(a) = (ia/7)(a fn a - b fnb - c fn c)

2

k7]

1/2

bl

2,172 ]1/2

Y . = [(nn/a)2 [(nn/b)z - k

na

Y = [(nﬂ/C)
nc

The left hand side of this equation is analytic in the lower half plane T < k2;

the right hand side in the:.upper half plane T > k Since these two regions

9°




overlap, by analytic continuation both sides must be equal to an entire

function P(a). Since I (aq) is the induced current on the septum, it behaves
-3/2 N A U 5

as a as a—>> in the upper half plane  Then by Liouville’'s theorm,

it can be shown that Pfa) is identizally zero,

of T (a):
+

Thus, one obtains the value

/ h =1
I (@) "(J—)l N Tl S S (3-8)
e 27 a C h12+h22 Lt(wlyla) L+(a7 1(a+1Yla)

and hence Al(a) via Equation (3-4), Substituting Al(a) into Equation (2-11)

and taking the inverse Fourier transform, one immediately obtains

h s
H (x,z) = L 2 SRR T sin »EfL
y %7 | 2a h 2,2 LCGiv) a
1ty J
fﬂ 1 1 Y cosh Yi{x-a) ' lhlO sinh Y(x-a)h e,iazdz <> b
L ()H (a) (a#iVia) sinh ¢ N h, sinh Yc s 5
¢ + -

o
[

L (a {(a) {a:1Y
e + - la
P

ih
Y cosh VYx 19 sinh Yx -1az
- - - e dz R Xx <Db

sinh “b_]

~| =
"~

-~

<)

B

Fie |

<Z

A
i
1

(2]

>

5

=2

<

where the integration path P is shown in Figure 2, with P = P, for z > 0, and
P = P2 for z < 0, The only singularities in the integrands are simple poles,

and the residue contributions of these poles are easily obtained, Evaluating

the integral, one has, after some algebra, for z > 0 and x > b,

iy y
0 (x. b 2 HOCh) ) o Vo(x-a) ~iagz
y X,2) = sin a | 2 2 \ H (a ) a +iY, sinh Y ¢
hl +h2 L_(-lrla) ~ 0 o la (o
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P for z<O

iraq
ir30

irlo

-irye P,Ps

-irsc

P, for z>0

Figure 2, Contour of integration for H (x,z) in
the case of infinite bifurca%ion,




h h —iY
hy 1 T T Ma g “Yiaz g Pp BV
+ = L cos ~(x-a)+ sin ~(x~a) | e -sin —— ——
h2_h2 L(-1Yla) a a h2 a ¢ h2 h2 L‘(~1X1a)
172 12
00 n h_ %
(~1) 1 [%ﬂ g 1 nc . nf :} -YneZ
= v — -~ CO05 —= X + sin — (x-a)| e
-iY -iY =Y Id h
n=1 L+( lC\(nc)HJr( * nc) Ync la ¢ ¢ 2 ¢
E ( ) = b H~(miyla) 1 1%y Yo eYO(x=a) e~iaoz (3-9)
Bxt¥o¥) = ST YEIV ) H (@) a 41V, sinh Y c
- la = 0 o la [¢)
1 ] hlaz 1 -y p B2V
. T « I, : o . 7 . =¥1a2 T = a
oo 1Y L CcOS (K-2)H - sin —(x=a) | e - sin —= ———m—or—
RV L : t : a RN
L( l'la) la a a h2 a J a L ( 1,13)
© (’wl)n 1 nf nfm hlao n ~Y z
= — — o [? . o cos —(x-a)+ —~-= sin u—(x~a{] e nc”
n=1 L+( 1Ync)H+( 1\fnc) ‘b V1a v ¢ hy ¢
: H (-1Y, )
y - cin F(xea) e Ylaz . o 7o - la
Ez(x,z) = sin a(x a) e v sin - LV )
) L (-iY )
: - =Y.
> 2 (-1 sin —K {a=-x) e nc?
H (-1y_ ) Y. =~ Y c
n=1 - nc la nc

For z > 0 and x < b, Hy(x,z), Ex(x,z) and Ez(x,z) have the same expressions as

given above except that (x-a), ny/c, Ync’ and ¢ are replaced by x, ng/b, Y

nb
and b, respectively, and the sign of all terms are changed, For z < 0, the

evaluation of the integral for Hy and so forth gives
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© oy By HGIY ) 1 1 1 (-1)
H (x.2) = ¥ sin —
y a 2+h2
1 2

L_(-ina) L+(iyna) Hi(iYna) (iyna+iyla) sin Bg b

n=1 h

H (-iY, )
mh - la 1 1 1 1
E (x,2z) = X sin — - - - : e e (3-10)
x 7 n=1 a L-( 1Yla) L+(1Yna) H_(iYna) (1Yna+lyl ) gin — b
2

h.a

( BT cos 20 x - 1o sin 2T x] eYnaz

na h
~ 2
o H (-iY_, ) L (iY_ )
E_(x,2) = ia na 1 0 YnaZ

v s - : sin — X e
n=1 H;(iYna) L—( lyla) (lyna+ 1Y1a) a

1
1 -
h h k/h2 h2 1 ]é Y ( 2 1{2)/2 é
= - -+ = - X = =
where % 2 1 2 o 61 > o % o1 E2’
is the derivative of H_(iYna) with respect to (iYna),

il
=
m

and H (1Y )
- na

Equation (3-9) and (3-10) comprise the complete and exact solution for the

case of semi-infinite bifurcation, It may be noted that the modes with the

: x =iqoz . , .
variation of eYo e 190 type are TEM because the corresponding Ez(x,z) is

identically zero, However, it is different from the ordinary TEM mode of an
isotropic guide in the following ways: (a) rather than being independent of
the transverse dimension, it varies exponentially along x; (b) in the scattered

field given by Equation (3-9), it is not continous at x = b, and (c) whether

3

it propagates or not solely depends on the properties of the plasma medium,
i
Explicitly, it is propagating if a = - k Ei’ is a negative real number, or
> ( 2 + 2)% Be se of the 'do tit ¥ /2 ( 2/4)% > (w2 + w2)£ we
w wp w, )" cau identity w + wp + oW, > p R
conclude~thatcfor the frequency in the upper band defined by Equation (2-5),
the TEM mode propagates, Conversely, for frequency in the lower band defined

by Equation (2-4), the TEM mode attenuates,




st
w

Since the TEM mode has zero Ez(x,z) component, it 1s seen that the inci~-
dent field in the above analysis is not uniquely specified by merely giving
Ei, as in Equation (2-8), However, this does not affect the uniqueness of
our solution as far as the scattered field is concerned, because an incident
TEM mode does not give rise to any scattered field since it propagates freely

in the guide without being disturbed by the septum,
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4, FINITE SEPTUM CASE

Now consider the case of a finite septum, First, the following notations

are introduced for the partial Fourier transform of Hy(x,z):

1 1/2 0 igz
® (x,a) = (——) H (x,2) e * dz
- 27 y
-0
1 1721 iaz
¢l(x,a) = <§%) Hy(x,z) e dz (4-1)
0

1/2 00 o
® (x,a) = (—£> H (x,z) ela(Z ) dz
+ y

It is clear that & (x,a) and ¢+(x,a) are analytic in the lower and upper half
plane, respectively, The function ®l(x,a) is an entire function of a, and in
particular, analytic in the upper half plane including the point at infinity,
However, the function eial @1(x,q) is analytic in the lower half plane as may

be seen from the representation:

. - 1/2 (4 .
iaf i ia(z-4)
e 3, (x,0) :;(2ﬂ> Hy(x,z) e dz

0]

1 1720 iau
= (-—) H (x,u+f) e “ qu.
27 y

-4

Rewriting Equation (2-11) in the above notations and evaluating it at x = b,

we have

. ih.a
et ® (b+0,a) + & (b+0,a) + & (b+0,a) = A_ |cosh Yc - 1 sinn Yc]
+ 1 - 1 th
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iaf sinh Yc ih,a
e @+(b‘0,0.) + ¢l(b-0,o.) + @_(b—O,Q) = - Al m [COSh Yb + th sinh 'Yb]

Since Hy(x,z), and hence ®(x,a), is continuous for x = b and -0 < z < 0, and

Xx =b and { < z < + oo, the difference of the above two equations gives

I+(a) = @l(b+0,a) - @1(b—0,a) = Al sinh ya/sinh Yb, (4-2)

Let us use the same notations for ¥(x,z), the Fourier transform of

Ez(x,z), as in Equation (4-1). Then letting x = b, Equation (2-12) becomes

iaf

e \If+(o.) + %) + ¥ (@) = A [h2

2
Lt hz/hzy] L(a) sinh Ye  (4-3)

1

Now, applying the boundary condition that the total tangential electric

field vanishes on the septum, we have

-y
E_(b,2) + (sin 7b/a) e la2 _ 90 for 0<z<{

or

1/2 iCa+ivY1a)¢
‘Jz’l(a) :/ZL) sin I2 I———— 1‘Y' S S ? —\ (4-4)
\ a [ ila+¥, ) ilatiy ) |

Substitution of Equations (4~2) and (4=4) into (4-3) results in

. 1/2 i(a+i¥, )2
iaf 1 . T 1 _e la
© \I/+ (@) + ( 277) sin o2 [i (a+iY1a) i(a+ina)£ ] + 0 (@)
h h2 (4-9)
_be 172 L) o
T a h H(a) 4+ @



16

Now, multiplying the above equation by ela[ H+(a)/L+(a), we have

A S sin 12 ot L@ +E (@) + F (a)
L (a) 27 a i(a+iy, ) L (a) + + &
+ la +
(4-6)
2 2
h7+h L (a) )
bc 12 -ia/f : .
= ey, [e I @] -E_ (@ - F_ ()

where the following notations have been used:

1 1/2 b e-ial H+(a)
(EE) sin == i(a+iyla) L*(a) = E+(a) + E_(a) (4-7)

¥_(H, (@)
L (a)
+

Mk (@ 4 F_(@ (4-8)

Similarly, multiplying Equation (4-5) by H (a)/L _(a), we have, after some re-

arrangements,

1/2 H (a) H (-iY_ ) ¥ (a)H (a)
N (@)+{= sin T2 L - - — ta + M (@) + —————me
- 2 a i(a+i¥ ) |L (@) L_(-iV ) - L_(a)
(4-9)
1 2 2
e 1 2 . b 1 H_(-l'\(la) M s be hl+h2 L+(c1) @
- e 27 S a i(a+ina) L_(-ina) 4@ a h2 H+(a) Ty
where the following notations have been used:
¥ (@)H_(a) iag _
_N-E:YEYME e = N+(a) + N _(a) (4-10)
1/2 i(a+iY1g)2 H (a)
1 . b e -
- = = = 4~
(zn-> sin = @iy, L@ M+(a) + M_(a) (4-11)
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Notice that the right hand side of Equation (4-6) and the left hand side of
Equation (4-9) are analytic in the upper half plane T > —kz; while the left
hand side of Equation (4-6) and the right hand side of Equation (4-9) are
analytic in the lower half plane T < k2. Hence, by analytic continuation,
Equation (4-6) and (4~9) are equal to some integral functions in a-plane,

By examining the asymptotic behavior of the functions in these two equations
as a—», it can be shown that the integral functions in both equations are
identically zero, At this point, it should be noted also that the decom-
positions in Equation (4-7), (4-8), (4~10) and (4-11) are very difficult or
impossible because of the presence of some unknown functions, Nevertheless,
the explicit expressions for these decompositions are not needed at this
moment, and they are introduced simply for the convenience in notations,
Remembering the decomposition theorem,5 the functions F+(a) and F_(a), for

example, are given by

oHd g @ (e oL
F () = s I dg
) + T 27i : (C,-a)L+(§)
-oo+id
T<d<< k2 (4-12)
i g @m gre ot
F (o) = = * dt
. o1 0L @)
V —co-id +

There:.eéxist similiar expressions for E+(a) and E_(q), N+(a) and N_(a), and
M+(a) and M_(a). For the following analysis, it will be convenient to

introduce some more notations, viz,,

1/2 ~Y1al
J+(a) = Q;(a) - (l;) sin m e 2

27 a i(a+iyla)
(4-13)
1/2
1 I U
J(_)(a) =¥ (a) + (2ﬂ> sin = Tariy,)
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where J (a) is analytic in the upper half plane T > - k2; and J
T+

o except for a pole at a

and the parenthésis in the subscript of J

analytic in the lower half plane T < k

is
(_)(a)

=7 lYla’
(_)(a) simply denotes the existence
of this pole, Returning to Equation (4-6) and (4-9) and equating their left

hand sides to zero, we obtain after introducing the notations in Equation
(4-12) and (4-13),

J, (@)H_ (a) . 1 co-id J(_)(g)H+(g) o104 at < o 1e)
L (a) 27i L (@) ¢-a -
+ . +
—oo-1id
J(_)(Q)H_(a) 1 orid  J (LXH (L)  iLs ot
L (a) T o L @) C-a
- . +
~ocot-id
(4-15)
N 1/2 T H (-1Yy,) 1 Y
27 a L (1Y, ) ila+iy¥, ) ~
- la la

The unknowns in the above equations are J+(a) and J(_)(a). In order to

decouple these two equations, we replace a by (-a) in Equation (4-14) and {

by (-¢) in (4-15), Since H+(-a) = H (a) and L+(—a) = L_(a), there results

J (-a)H_(a) co-id J, ((QIH () -its
* + = ©) -+ e dt = 0
L_(a) 2771 L (¢) {+a
—oo~-id +
J(_)(a)H_(a) , 1 o-id J (-LH () -itd at
L_(a) 271 L () {+a
-oo-id *
i (JL v sin 2 1= TTNa) L =0
27 a L_(-1Y ) dla+iy; )~
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The sum and difference of the above two equations yield

Sy@H (@ cor1d S Ly (WH, @) -1t
L (a) + 271 L+(§) L+a ag
~oco~-id (4-16)
(L 1/2 T H_(-1Y, ) 1 o
27 L_(-ina) i(a+iY1a)
D _(0)H_() N G PR AL NS IRELY.
L (a) T o2qi L+(g) t+a dg
-co-id
(4-17)

1\ m H_(-1Y] ) L .,
27 a  L_(-iY ) i(a+i¥ ) =

where S _y(a) = J(_)(a) +J (=a) D(_)(a) = J(_)(a) - J, (0.

The parentheses in the subscripts of S (a) and D (a) are also used to

-) -)
denote the existence of the pole in the lower half plane at a = - ina' There
is only one unknown appearing in each of these equations; therefore, the solu-
1 of S(_)(a) and D(_)(g) could be obtained if the integrals were known,

First, consider the integral in Equation (4-16). Writing out the functions

H+(§) and L+(§) in an explicit manner, we have

ocotid .

1 Sy WH ) _~1ts )

= 27i L () {+a 5

) +
—-co~id
o0
1 S @ B A0, T rq) e 1t

= —2*7?1— 00 §+a dg

(a8 O ®/mm K - 1) (e/nm (Y - iL)

n=1
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-i
Because of the factor e Cﬁ, we can close the path of integration by an
infinite semicircle in the lower half plane denoted by P as shown in Figure 3,
The following observations may be made in connection with the integral for G.

(a) The only pole of S (¢) in the lower half plane is at { = - 1Y

-)

however, this is cancelled by a zero of H+(§).

1la’

(b) The pole at { = - a is not inside the contour P since we can choose
(-d) arbitrarily close to (—kz).
(c) The pole contributions at { = - iY and { = - iY will contain the
RV Ry lnb nc
decaying factors e Db” and e 1€, respectively, where, under pre-

vious assumption, Y and Ync are real and positive, Thus, for suf-

nb
ficiently large {, the contributions due to these poles are negligible,
(d) The pole at { = a, will contribute only when a, is a real number,
i,e., for frequencies in the upper band; otherwise, its contribution
becomes negligible for large { due to the same reason as in (c),
Therefore, for large {, and the frequency in the upper band, one obtains

the following approximation for G,

G~ [8,_,@)H, (a)/L_(a)] e~ 100l

)

Substitution of this approximation into Equation (4-16) results in

1
A L_(-Y) i(a¥ivy)

L (a) * L () =0 (4-18)

S(_)(a)H_(a) S(_)(aO)H+(ao) ~iag! (]_)1/2 b H_(-Yla)
e e sin

To evaluate S (ao), one simply sets a = a, in the above equation and obtains

)

- -1
H (a )+H (a e lagt
-0 T+ o

L (a)
lag

(4-19)

1\ Y2 m H_(-iY) ) 1
S (a ) = sin —
(-) o

L_(-iY ) i(a_+1Y, )

Then by putting S(_)(ao) back into Equation (4-~18), one obtains an expression




ReY|O ———————— —t o —— . ———— — —

Figure 3, Contour of integration for G in
Equation (4-16),

® Rel
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for S(_)(a) or [¥ (a) + ¥_(-a)], namely,

p HoG1Y ) L (@ 8._y@)H (a)

— —_ —_— i _— - - 7 °
Y_(@)+¥ (-a) ‘(2n> M AL -1y ) 1(a+i¥ ) H_(a) H (a)
- a la - -
N2 L o V1al
“| 37 sin — | = Y. ) - 3 Y. ) (4-20)
T a | i(a+i la i(-a+i la

Similiarly, by starting with Equations (4-17) and following the same procedure,

one obtains

1 . )
¥ @t () = (L e e L@ P @) a8
s Y a L (-iY1 ) i(a+iY. ) H (@ H (a)
- a la - -
1
5 "Ylaf
()2 sinﬂ - 1. b (4-21)
27 a 1(a+1Y1a) 1(—a+1Y1a)
where D(_)(ao) is given by
_ —iQof _l 1 s
D (a ) = H_(ao) H+(ao)e —L-zlsin ™ ¢ 1Y1a) 1 (4-22)
(-) o L (a) 27 a L (-iY, ) i(a +1iY, )
-0 - la (o) la

From Equation (4-20) and (4-21), one readily obtains the solution for @L(a) and
Q;(—a):

1 s -ia,{
T (a) = N2 o ) 1 b Rlege 7 [D,_ (a )-S5, (a)
-G =1z a L_(-iV ) @Y, ) B (@ ' 2H_() (%778 () (eo)]

1 172 . Tb 1
27 S T(a+iY. )
la
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1 _ iagt
e V1al i (a e

[ L i, TP -
2, () -<zﬂ) S Ty (@) [Dyla) + 8 y(a)]

where the sign of a in the expression @;(—a) has been changed in order to have
the solution for @;(a). Substituting the above results into Equation (4-3),
one can solve for Al(a), and hence ®(x,a), via Equation (2-11). It suffices

to consider only the region x > b, where it is found that

1 .
&(x,a) = °2 — gsin 12 H—(—lyla) = L
3 = h§+h§ (27T> a L_ (—ina) (iCL"'Yla) L+(O.)H_(O.)
H, (o )e %!
@@ P @ 8 @) (4-23)

i(a=-ag){ .

H+(0‘o)e ° D @) S @) Ycosh(x-a) lhla sinhY(x-4)
2L(a)H+(a) [ -) "% P % ] sinh Yc + h2 sinh Yc

The scattered magnetic field Hy(x,z) is obtained by taking the inverse Fourier

transform of ®(x,a), namely for x > b,

H (x.2) = "y 1 (yeosh(x-a) . ™% sinhv(x-a))
y *>2) =53 anj i‘sinh Ye *Tn sinh Yc }
h_ +h 2
1772
Py
sin T2 B3V, ) 1 1
L_(-1Y; ) (a+iV¥ ) L (a)H_(a)
T % iH+(ao)e—la0£ -iaz
LN D -
+(2> Li_ @ P (@) = Syledlp e de
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. 1 -ia /¢
_ h2 1 Ycosh (x-a) . 1h1a sinhY(x-2a) T 2 1H+(ao)e ©
h:i+h§ 271 sinh Ye h2 sinh Yc 2 L(a)H+ (@)
P2
-ig(z-4) _
D(_)(ao) + S(_)(ao) e da (4-24)

where Pland P2 are the paths of integration determined by the convergence of
respective integrals as shown in Figure 4, Since only simple poles are involved,
the evaluation of the above integrals is straightforward, However, the com~
plete field expressions become quite complicated; therefore, only the expression

for propagating modes are given below:

For x > b and z < O,

“'iaof

1
H (-iY, ) = iH (a e
Hy(x,z) o2 la 1 1 N (g)z + 0

h
h§+h§ L_(-1Y, ) L+(iY1a)Hl(iY13) 21Y, LY, DI GEY )

11 Y
[D, (@) -8 (a )] TeosT x - ——=2 sin T x} ¢ 128%
- o] - o a h a

For x >b and 0 <z < {,

h h_Y
B 2 1 i Mool lla . m, _ -Y1a2
Hy(x,z) =23 LY ) [ja cos a(x a) + n sin a(x a)] e
h_+h la 2
1 2
. h2 sin b h2 H—(—ina) 1 1 Yo eYo(x—a) e—iaoz
2.2 p2.p2 LoGiY) H (@) a #iVp sinhY c
1 2 1 2
. 1 ~iag!
. lhz i z H+(ao)e [D (@) - S ( ) ——19—— eyo(x—a) e—iaoz
2 2|2 H (o)L (@) L (=) % ) @) SRy <
1+h2 -0 -0 fo)




PATH P, PATH P,

Ist. TERM 2nd. TERM
Iy
z<0 > 2 _
Qo ao =ifa
A
O<z< 4 "o
—0 -~ —» ——
z Qo -irg Qo
3 4 4
ir irg -
‘£‘< 2 _4 . 1Q - 1a 0

a=0+iT PLANE

Figure 4, Contour of integration for H_(x,z} in
the case of finite bifurcation,



H (a)e
+ 0

) ~izay,{

)%

NI

) 1h2 (
2 2
hl+h2

2 1

H (@)L (a)
-0’ =0

e'iyla(z-f)

L(-iY1

[D, (@) +s
(o]

-)

1
—Ylaz _ i 2
)

T

—~ cos 7—T-(x—a.) +
a a

, Yo
(—)(ao)] sinhY c
o
iH (a )e-iaol
+ 0

H;(—iyla)L(_ina)

h Y

2

2 sin E(x—a)
a
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Yo (a-x ia.2
e Yo(a=x)  ia,

[D

-)

(a )+S
(e}

-)

(ao)]

For x < b, the magnetic field Hy(x,z) has the same expression as above except

that (x-a) is replaced by x, and the sign of the entire expression is changed,

Accordingly, the electric fields Ex(x,z) and Ez(x,z) can be detained from

Equation (2-6) and (2-7),

Thus, the case of finite septum for large { is

solved with the approximation described above,
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5. CONCLUSION

In this paper the problem of H~plane bifurcation in a parallel plate
waveguide filled with anisotropic plasma is solved provided that the dc mag-
netic field is along the edge of the septum, and there is no field variation
in this direction, When the septum is exXtended to infinity, the exact field
solution is obtained, When the septum is of finite length ¢, an approximate
solution is found for large f. 1In both cases the incident field is assumed
to be the dominant TE or TM mode, In the trivial case when the incident field
is of TEM mode, the wave travels freely in the guide and the septum causes no
modification on the fields. In case of an incident TE mode, the problem
becomes identical to that for an isotropic medium in the guide, 1In case of
an incident TM mode, a scattered TEM mode is produced in the bifurcated portion,
Although in this paper for simplicity only one propagating mode is assumed in
the un-bifurcated portion, a more general case can be solved with no difficulty,
In the case of finite bifurcation, where { is not very large, a more accurate
approximation can be obtained by retaining more terms in the integral G in

Equation (4-16).
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